kdTree2_mod sourceΒΆ

   1!
   2!(c) Matthew Kennel, Institute for Nonlinear Science (2004)
   3!
   4! Licensed under the Academic Free License version 1.1 found in file LICENSE_kdTree2.txt
   5! with additional provisions found in that same file.
   6!
   7module kdtree2_precision_mod
   8  ! MODULE kdtree2_precision_mod (prefix='none' category='8. Low-level utilities and constants')
   9  !
  10  !: Purpose: Module used by the kdTree2_mod module.
  11  !
  12  integer, parameter :: sp = kind(0.0)
  13  integer, parameter :: dp = kind(0.0d0)
  14
  15  private :: sp, dp
  16
  17  !
  18  ! You must comment out exactly one
  19  ! of the two lines.  If you comment
  20  ! out kdkind = sp then you get single precision
  21  ! and if you comment out kdkind = dp 
  22  ! you get double precision.
  23  !
  24
  25  !integer, parameter :: kdkind = sp  
  26  integer, parameter :: kdkind = dp  
  27  public :: kdkind
  28
  29end module kdtree2_precision_mod
  30
  31module kdtree2_priority_queue_mod
  32  ! MODULE kdtree2_priority_queue_mod (prefix='none' category='8. Low-level utilities and constants')
  33  !
  34  !: Purpose: Module used by the kdTree2_mod module.
  35  !
  36  use utilities_mod
  37  use kdtree2_precision_mod
  38  !
  39  ! maintain a priority queue (PQ) of data, pairs of 'priority/payload', 
  40  ! implemented with a binary heap.  This is the type, and the 'dis' field
  41  ! is the priority.
  42  !
  43  type kdtree2_result
  44      ! a pair of distances, indexes
  45      real(kdkind)    :: dis!=0.0
  46      integer :: idx!=-1   Initializers cause some bugs in compilers.
  47  end type kdtree2_result
  48  !
  49  ! A heap-based priority queue lets one efficiently implement the following
  50  ! operations, each in log(N) time, as opposed to linear time.
  51  !
  52  ! 1)  add a datum (push a datum onto the queue, increasing its length) 
  53  ! 2)  return the priority value of the maximum priority element 
  54  ! 3)  pop-off (and delete) the element with the maximum priority, decreasing
  55  !     the size of the queue. 
  56  ! 4)  replace the datum with the maximum priority with a supplied datum
  57  !     (of either higher or lower priority), maintaining the size of the
  58  !     queue. 
  59  !
  60  !
  61  ! In the k-d tree case, the 'priority' is the square distance of a point in
  62  ! the data set to a reference point.   The goal is to keep the smallest M
  63  ! distances to a reference point.  The tree algorithm searches terminal
  64  ! nodes to decide whether to add points under consideration.
  65  !
  66  ! A priority queue is useful here because it lets one quickly return the
  67  ! largest distance currently existing in the list.  If a new candidate
  68  ! distance is smaller than this, then the new candidate ought to replace
  69  ! the old candidate.  In priority queue terms, this means removing the
  70  ! highest priority element, and inserting the new one.
  71  !
  72  ! Algorithms based on Cormen, Leiserson, Rivest, _Introduction
  73  ! to Algorithms_, 1990, with further optimization by the author.
  74  !
  75  ! Originally informed by a C implementation by Sriranga Veeraraghavan.
  76  !
  77  ! This module is not written in the most clear way, but is implemented such
  78  ! for speed, as it its operations will be called many times during searches
  79  ! of large numbers of neighbors.
  80  !
  81  type pq
  82      !
  83      ! The priority queue consists of elements
  84      ! priority(1:heap_size), with associated payload(:).
  85      !
  86      ! There are heap_size active elements. 
  87      ! Assumes the allocation is always sufficient.  Will NOT increase it
  88      ! to match.
  89      integer :: heap_size = 0
  90      type(kdtree2_result), pointer :: elems(:) 
  91  end type pq
  92
  93  public :: kdtree2_result
  94
  95  public :: pq
  96  public :: pq_create
  97  public :: pq_delete, pq_insert
  98  public :: pq_extract_max, pq_max, pq_replace_max, pq_maxpri
  99  private
 100
 101contains
 102
 103
 104  function pq_create(results_in) result(res)
 105    !:Purpose: Create a priority queue from ALREADY allocated
 106    !           array pointers for storage.  NOTE! It will NOT
 107    !           add any alements to the heap, i.e. any existing
 108    !           data in the input arrays will NOT be used and may
 109    !           be overwritten.
 110    ! 
 111
 112    ! usage:
 113    !    real(kdkind), pointer :: x(:)
 114    !    integer, pointer :: k(:)
 115    !    allocate(x(1000),k(1000))
 116    !    pq => pq_create(x,k)
 117    !
 118    type(kdtree2_result), target:: results_in(:) 
 119    type(pq) :: res
 120    !
 121    !
 122    integer :: nalloc
 123
 124    nalloc = size(results_in,1)
 125    if (nalloc .lt. 1) then
 126       write (*,*) 'PQ_CREATE: error, input arrays must be allocated.'
 127    end if
 128    res%elems => results_in
 129    res%heap_size = 0
 130    return
 131  end function pq_create
 132
 133
 134  subroutine heapify(a,i_in)
 135    !:Purpose: take a heap rooted at 'i' and force it to be in the
 136    !           heap canonical form.   This is performance critical 
 137    !           and has been tweaked a little to reflect this.
 138    !
 139    type(pq),pointer   :: a
 140    integer, intent(in) :: i_in
 141    !
 142    integer :: i, l, r, largest
 143
 144    real(kdkind)    :: pri_i, pri_l, pri_r, pri_largest
 145
 146
 147    type(kdtree2_result) :: temp
 148
 149    i = i_in
 150
 151bigloop:  do
 152       l = 2*i ! left(i)
 153       r = l+1 ! right(i)
 154       ! 
 155       ! set 'largest' to the index of either i, l, r
 156       ! depending on whose priority is largest.
 157       !
 158       ! note that l or r can be larger than the heap size
 159       ! in which case they do not count.
 160
 161
 162       ! does left child have higher priority? 
 163       if (l .gt. a%heap_size) then
 164          ! we know that i is the largest as both l and r are invalid.
 165          exit 
 166       else
 167          pri_i = a%elems(i)%dis
 168          pri_l = a%elems(l)%dis 
 169          if (pri_l .gt. pri_i) then
 170             largest = l
 171             pri_largest = pri_l
 172          else
 173             largest = i
 174             pri_largest = pri_i
 175          endif
 176
 177          !
 178          ! between i and l we have a winner
 179          ! now choose between that and r.
 180          !
 181          if (r .le. a%heap_size) then
 182             pri_r = a%elems(r)%dis
 183             if (pri_r .gt. pri_largest) then
 184                largest = r
 185             endif
 186          endif
 187       endif
 188
 189       if (largest .ne. i) then
 190          ! swap data in nodes largest and i, then heapify
 191
 192          temp = a%elems(i)
 193          a%elems(i) = a%elems(largest)
 194          a%elems(largest) = temp 
 195          ! 
 196          ! Canonical heapify() algorithm has tail-ecursive call: 
 197          !
 198          !        call heapify(a,largest)   
 199          ! we will simulate with cycle
 200          !
 201          i = largest
 202          cycle bigloop ! continue the loop 
 203       else
 204          return   ! break from the loop
 205       end if
 206    enddo bigloop
 207    return
 208  end subroutine heapify
 209
 210  subroutine pq_max(a,e) 
 211    !:Purpose: return the priority and its payload of the maximum priority element
 212    !           on the queue, which should be the first one, if it is 
 213    !           in heapified form.
 214    !
 215    type(pq),pointer :: a
 216    type(kdtree2_result),intent(out)  :: e
 217
 218    if (a%heap_size .gt. 0) then
 219       e = a%elems(1) 
 220    else
 221       call utl_abort('kdtree2_mod-PQ_MAX: ERROR, heap_size < 1')
 222    endif
 223    return
 224  end subroutine pq_max
 225  
 226  real(kdkind) function pq_maxpri(a)
 227    type(pq), pointer :: a
 228
 229    if (a%heap_size .gt. 0) then
 230       pq_maxpri = a%elems(1)%dis
 231    else
 232       call utl_abort('kdtrees_mod-PQ_MAX_PRI: ERROR, heapsize < 1')
 233    endif
 234    return
 235  end function pq_maxpri
 236
 237  subroutine pq_extract_max(a,e)
 238    !:Purpose: return the priority and payload of maximum priority
 239    !           element, and remove it from the queue.
 240    !           (equivalent to 'pop()' on a stack)
 241    !
 242    type(pq),pointer :: a
 243    type(kdtree2_result), intent(out) :: e
 244    
 245    if (a%heap_size .ge. 1) then
 246       !
 247       ! return max as first element
 248       !
 249       e = a%elems(1) 
 250       
 251       !
 252       ! move last element to first
 253       !
 254       a%elems(1) = a%elems(a%heap_size) 
 255       a%heap_size = a%heap_size-1
 256       call heapify(a,1)
 257       return
 258    else
 259       call utl_abort('kdtree2_mod-PQ_EXTRACT_MAX: error, attempted to pop non-positive PQ')
 260    end if
 261    
 262  end subroutine pq_extract_max
 263
 264
 265  real(kdkind) function pq_insert(a,dis,idx) 
 266    !:Purpose: Insert a new element and return the new maximum priority,
 267    !           which may or may not be the same as the old maximum priority.
 268    !
 269    type(pq),pointer  :: a
 270    real(kdkind), intent(in) :: dis
 271    integer, intent(in) :: idx
 272    !    type(kdtree2_result), intent(in) :: e
 273    !
 274    integer :: i, isparent
 275    real(kdkind)    :: parentdis
 276    !
 277
 278    !    if (a%heap_size .ge. a%max_elems) then
 279    !       write (*,*) 'PQ_INSERT: error, attempt made to insert element on full PQ'
 280    !       stop
 281    !    else
 282    a%heap_size = a%heap_size + 1
 283    i = a%heap_size
 284
 285    do while (i .gt. 1)
 286       isparent = int(i/2)
 287       parentdis = a%elems(isparent)%dis
 288       if (dis .gt. parentdis) then
 289          ! move what was in i's parent into i.
 290          a%elems(i)%dis = parentdis
 291          a%elems(i)%idx = a%elems(isparent)%idx
 292          i = isparent
 293       else
 294          exit
 295       endif
 296    end do
 297
 298    ! insert the element at the determined position
 299    a%elems(i)%dis = dis
 300    a%elems(i)%idx = idx
 301
 302    pq_insert = a%elems(1)%dis 
 303    return
 304    !    end if
 305
 306  end function pq_insert
 307
 308  subroutine pq_adjust_heap(a,i)
 309    type(pq),pointer  :: a
 310    integer, intent(in) :: i
 311    !
 312    ! nominally arguments (a,i), but specialize for a=1
 313    !
 314    ! This routine assumes that the trees with roots 2 and 3 are already heaps, i.e.
 315    ! the children of '1' are heaps.  When the procedure is completed, the
 316    ! tree rooted at 1 is a heap.
 317    real(kdkind) :: prichild
 318    integer :: parent, child, N
 319
 320    type(kdtree2_result) :: e
 321
 322    e = a%elems(i) 
 323
 324    parent = i
 325    child = 2*i
 326    N = a%heap_size
 327    
 328    do while (child .le. N)
 329       if (child .lt. N) then
 330          if (a%elems(child)%dis .lt. a%elems(child+1)%dis) then
 331             child = child+1
 332          endif
 333       endif
 334       prichild = a%elems(child)%dis
 335       if (e%dis .ge. prichild) then
 336          exit 
 337       else
 338          ! move child into parent.
 339          a%elems(parent) = a%elems(child) 
 340          parent = child
 341          child = 2*parent
 342       end if
 343    end do
 344    a%elems(parent) = e
 345    return
 346  end subroutine pq_adjust_heap
 347    
 348
 349  real(kdkind) function pq_replace_max(a,dis,idx) 
 350    !:Purpose: Replace the extant maximum priority element
 351    !           in the PQ with (dis,idx).  Return
 352    !           the new maximum priority, which may be larger
 353    !           or smaller than the old one.
 354    !
 355    type(pq),pointer         :: a
 356    real(kdkind), intent(in) :: dis
 357    integer, intent(in) :: idx
 358!    type(kdtree2_result), intent(in) :: e
 359    ! not tested as well!
 360
 361    integer :: parent, child, N
 362    real(kdkind)    :: prichild, prichildp1
 363
 364    type(kdtree2_result) :: etmp
 365    
 366    if (.true.) then
 367       N=a%heap_size
 368       if (N .ge. 1) then
 369          parent =1
 370          child=2
 371
 372          loop: do while (child .le. N)
 373             prichild = a%elems(child)%dis
 374
 375             !
 376             ! posibly child+1 has higher priority, and if
 377             ! so, get it, and increment child.
 378             !
 379
 380             if (child .lt. N) then
 381                prichildp1 = a%elems(child+1)%dis
 382                if (prichild .lt. prichildp1) then
 383                   child = child+1
 384                   prichild = prichildp1
 385                endif
 386             endif
 387
 388             if (dis .ge. prichild) then
 389                exit loop  
 390                ! we have a proper place for our new element, 
 391                ! bigger than either children's priority.
 392             else
 393                ! move child into parent.
 394                a%elems(parent) = a%elems(child) 
 395                parent = child
 396                child = 2*parent
 397             end if
 398          end do loop
 399          a%elems(parent)%dis = dis
 400          a%elems(parent)%idx = idx
 401          pq_replace_max = a%elems(1)%dis
 402       else
 403          a%elems(1)%dis = dis
 404          a%elems(1)%idx = idx
 405          pq_replace_max = dis
 406       endif
 407    else
 408       !
 409       ! slower version using elementary pop and push operations.
 410       !
 411       call pq_extract_max(a,etmp) 
 412       etmp%dis = dis
 413       etmp%idx = idx
 414       pq_replace_max = pq_insert(a,dis,idx)
 415    endif
 416    return
 417  end function pq_replace_max
 418
 419  subroutine pq_delete(a,i)
 420    !:Purpose: delete item with index 'i'
 421    !
 422    type(pq),pointer :: a
 423    integer           :: i
 424
 425    if ((i .lt. 1) .or. (i .gt. a%heap_size)) then
 426       call utl_abort('kdtree2_mod-PQ_DELETE: error, attempt to remove out of bounds element.')
 427    endif
 428
 429    ! swap the item to be deleted with the last element
 430    ! and shorten heap by one.
 431    a%elems(i) = a%elems(a%heap_size) 
 432    a%heap_size = a%heap_size - 1
 433
 434    call heapify(a,i)
 435
 436  end subroutine pq_delete
 437
 438end module kdtree2_priority_queue_mod
 439
 440
 441module kdTree2_mod
 442  ! MODULE kdTree2_mod (prefix='kdtree2' category='8. Low-level utilities and constants')
 443  !
 444  !:Purpose: An implementation of the kdtree algorithm for efficiently finding nearby
 445  !           locations (first used in LETKF to find all obs near an analysis grid point).
 446  !           Written by Matt Kennel.
 447  !
 448  use utilities_mod
 449  use kdtree2_precision_mod
 450  use kdtree2_priority_queue_mod
 451  use earthConstants_mod
 452  ! K-D tree routines in Fortran 90 by Matt Kennel.
 453  ! Original program was written in Sather by Steve Omohundro and
 454  ! Matt Kennel.  Only the Euclidean metric is supported. 
 455  !
 456  !
 457  ! This module is identical to 'kd_tree', except that the order
 458  ! of subscripts is reversed in the data file.
 459  ! In otherwords for an embedding of N D-dimensional vectors, the
 460  ! data file is here, in natural Fortran order  data(1:D, 1:N)
 461  ! because Fortran lays out columns first,
 462  !
 463  ! whereas conventionally (C-style) it is data(1:N,1:D)
 464  ! as in the original kd_tree module. 
 465  !
 466  !-------------DATA TYPE, CREATION, DELETION---------------------
 467  public :: kdkind
 468  public :: kdtree2, kdtree2_result, tree_node, kdtree2_create, kdtree2_destroy
 469  !---------------------------------------------------------------
 470  !-------------------SEARCH ROUTINES-----------------------------
 471  public :: kdtree2_n_nearest,kdtree2_n_nearest_around_point
 472  ! Return fixed number of nearest neighbors around arbitrary vector,
 473  ! or extant point in dataset, with decorrelation window. 
 474  !
 475  public :: kdtree2_r_nearest, kdtree2_r_nearest_around_point
 476  ! Return points within a fixed ball of arb vector/extant point 
 477  !
 478  public :: kdtree2_sort_results
 479  ! Sort, in order of increasing distance, rseults from above.
 480  !
 481  public :: kdtree2_r_count, kdtree2_r_count_around_point 
 482  ! Count points within a fixed ball of arb vector/extant point 
 483  !
 484  public :: kdtree2_n_nearest_brute_force, kdtree2_r_nearest_brute_force
 485  ! brute force of kdtree2_[n|r]_nearest
 486  !----------------------------------------------------------------
 487
 488  public :: kdtree2_3dPosition
 489
 490  integer, parameter :: bucket_size = 12
 491  ! The maximum number of points to keep in a terminal node.
 492
 493  type interval
 494      real(kdkind) :: lower,upper
 495  end type interval
 496
 497  type :: tree_node
 498      ! an internal tree node
 499      private
 500      integer :: cut_dim
 501      ! the dimension to cut
 502      real(kdkind) :: cut_val
 503      ! where to cut the dimension
 504      real(kdkind) :: cut_val_left, cut_val_right  
 505      ! improved cutoffs knowing the spread in child boxes.
 506      integer :: l, u
 507      type (tree_node), pointer :: left, right
 508      type(interval), pointer :: box(:) => null()
 509      ! child pointers
 510      ! Points included in this node are indexes[k] with k \in [l,u] 
 511
 512
 513  end type tree_node
 514
 515  type :: kdtree2
 516      ! Global information about the tree, one per tree
 517      integer :: dimen=0, n=0
 518      ! dimensionality and total # of points
 519      real(kdkind), pointer :: the_data(:,:) => null()
 520      ! pointer to the actual data array 
 521      ! 
 522      !  IMPORTANT NOTE:  IT IS DIMENSIONED   the_data(1:d,1:N)
 523      !  which may be opposite of what may be conventional.
 524      !  This is, because in Fortran, the memory layout is such that
 525      !  the first dimension is in sequential order.  Hence, with
 526      !  (1:d,1:N), all components of the vector will be in consecutive
 527      !  memory locations.  The search time is dominated by the
 528      !  evaluation of distances in the terminal nodes.  Putting all
 529      !  vector components in consecutive memory location improves
 530      !  memory cache locality, and hence search speed, and may enable 
 531      !  vectorization on some processors and compilers. 
 532
 533      integer, pointer :: ind(:) => null()
 534      ! permuted index into the data, so that indexes[l..u] of some
 535      ! bucket represent the indexes of the actual points in that
 536      ! bucket.
 537      logical       :: sort = .false.
 538      ! do we always sort output results?
 539      logical       :: rearrange = .false. 
 540      real(kdkind), pointer :: rearranged_data(:,:) => null()
 541      ! if (rearrange .eqv. .true.) then rearranged_data has been
 542      ! created so that rearranged_data(:,i) = the_data(:,ind(i)),
 543      ! permitting search to use more cache-friendly rearranged_data, at
 544      ! some initial computation and storage cost.
 545      type (tree_node), pointer :: root => null()
 546      ! root pointer of the tree
 547  end type kdtree2
 548
 549
 550  type :: tree_search_record
 551      !
 552      ! One of these is created for each search.
 553      !
 554      private
 555      ! 
 556      ! Many fields are copied from the tree structure, in order to
 557      ! speed up the search.
 558      !
 559      integer           :: dimen   
 560      integer           :: nn, nfound
 561      real(kdkind)      :: ballsize
 562      integer           :: centeridx=999, correltime=9999
 563      ! exclude points within 'correltime' of 'centeridx', iff centeridx >= 0
 564      integer           :: nalloc  ! how much allocated for results(:)?
 565      logical           :: rearrange  ! are the data rearranged or original? 
 566      ! did the # of points found overflow the storage provided?
 567      logical           :: overflow
 568      real(kdkind), pointer :: qv(:)  ! query vector
 569      type(kdtree2_result), pointer :: results(:) ! results
 570      type(pq) :: pq
 571      real(kdkind), pointer :: data(:,:)  ! temp pointer to data
 572      integer, pointer      :: ind(:)     ! temp pointer to indexes
 573  end type tree_search_record
 574
 575  private
 576  ! everything else is private.
 577
 578  type(tree_search_record), save, allocatable, target :: sr(:)   ! A GLOBAL VARIABLE for search
 579
 580contains
 581
 582  function kdtree2_create(input_data,dim,sort,rearrange) result (mr)
 583    !:Purpose: Create the actual tree structure, given an input array of data.
 584
 585    ! Note, input data is input_data(1:d,1:N), NOT the other way around.
 586    ! THIS IS THE REVERSE OF THE PREVIOUS VERSION OF THIS MODULE.
 587    ! The reason for it is cache friendliness, improving performance.
 588    !
 589    ! Optional arguments:  If 'dim' is specified, then the tree
 590    !                      will only search the first 'dim' components
 591    !                      of input_data, otherwise, dim is inferred
 592    !                      from SIZE(input_data,1).
 593    !
 594    !                      if sort .eqv. .true. then output results
 595    !                      will be sorted by increasing distance.
 596    !                      default=.false., as it is faster to not sort.
 597    !                      
 598    !                      if rearrange .eqv. .true. then an internal
 599    !                      copy of the data, rearranged by terminal node,
 600    !                      will be made for cache friendliness. 
 601    !                      default=.true., as it speeds searches, but
 602    !                      building takes longer, and extra memory is used.
 603    !
 604    ! .. Function Return Cut_value ..
 605    type (kdtree2), pointer :: mr
 606    integer, intent(in), optional      :: dim
 607    logical, intent(in), optional      :: sort
 608    logical, intent(in), optional      :: rearrange
 609    ! ..
 610    ! .. Array Arguments ..
 611    real(kdkind), target :: input_data(:,:)
 612    !
 613    integer :: i, numthread, mythread
 614    integer, external :: omp_get_thread_num, omp_get_num_threads
 615    ! ..
 616    allocate (mr)
 617    mr%the_data => input_data
 618    ! pointer assignment
 619
 620    if (present(dim)) then
 621       mr%dimen = dim
 622    else
 623       mr%dimen = size(input_data,1)
 624    end if
 625    mr%n = size(input_data,2)
 626
 627    if (mr%n < 1) then
 628       !  unlikely to be correct
 629       write (*,*) 'KD_TREE_TRANS: likely user error.'
 630       write (*,*) 'KD_TREE_TRANS: You passed in matrix with D=',mr%dimen
 631       write (*,*) 'KD_TREE_TRANS: and N=',mr%n
 632       write (*,*) 'KD_TREE_TRANS: note, that new format is data(1:D,1:N)'
 633       write (*,*) 'KD_TREE_TRANS: with usually N >> D.   If N =approx= D, then a k-d tree'
 634       write (*,*) 'KD_TREE_TRANS: is not an appropriate data structure.'
 635       call utl_abort('kdtree2_create: supplied array has no data')
 636    end if
 637
 638    !$OMP PARALLEL PRIVATE(mythread)
 639    mythread = omp_get_thread_num()
 640    if ( mythread == 0 ) then
 641      numthread = omp_get_num_threads()
 642    end if
 643    !$OMP END PARALLEL
 644
 645    if ( .not. allocated(sr) ) allocate(sr(0:numthread-1))
 646
 647    call build_tree(mr)
 648
 649    if (present(sort)) then
 650       mr%sort = sort
 651    else
 652       mr%sort = .false.
 653    endif
 654
 655    if (present(rearrange)) then
 656       mr%rearrange = rearrange
 657    else
 658       mr%rearrange = .true.
 659    endif
 660
 661    if (mr%rearrange) then
 662       allocate(mr%rearranged_data(mr%dimen,mr%n))
 663       do i=1,mr%n
 664          mr%rearranged_data(:,i) = mr%the_data(:, &
 665           mr%ind(i))
 666       enddo
 667    else
 668       nullify(mr%rearranged_data)
 669    endif
 670
 671  end function kdtree2_create
 672
 673    subroutine build_tree(tp)
 674      type (kdtree2), pointer :: tp
 675      ! ..
 676      integer :: j
 677      type(tree_node), pointer :: dummy => null()
 678      ! ..
 679      allocate (tp%ind(tp%n))
 680      forall (j=1:tp%n)
 681         tp%ind(j) = j
 682      end forall
 683      tp%root => build_tree_for_range(tp,1,tp%n, dummy)
 684    end subroutine build_tree
 685
 686    recursive function build_tree_for_range(tp,l,u,parent) result (res)
 687      ! .. Function Return Cut_value ..
 688      type (tree_node), pointer :: res
 689      ! ..
 690      ! .. Structure Arguments ..
 691      type (kdtree2), pointer :: tp
 692      type (tree_node),pointer           :: parent
 693      ! ..
 694      ! .. Scalar Arguments ..
 695      integer, intent (In) :: l, u
 696      ! ..
 697      ! .. Local Scalars ..
 698      integer :: i, c, m, dimen
 699      logical :: recompute
 700      real(kdkind)    :: average
 701
 702      ! first compute min and max
 703      dimen = tp%dimen
 704      allocate (res)
 705      allocate(res%box(dimen))
 706
 707      ! First, compute an APPROXIMATE bounding box of all points associated with this node.
 708      if ( u < l ) then
 709         ! no points in this box
 710         nullify(res)
 711         return
 712      end if
 713
 714      if ((u-l)<=bucket_size) then
 715         !
 716         ! always compute true bounding box for terminal nodes.
 717         !
 718         do i=1,dimen
 719            call spread_in_coordinate(tp,i,l,u,res%box(i))
 720         end do
 721         res%cut_dim = 0
 722         res%cut_val = 0.0
 723         res%l = l
 724         res%u = u
 725         res%left =>null()
 726         res%right => null() 
 727      else
 728         ! 
 729         ! modify approximate bounding box.  This will be an
 730         ! overestimate of the true bounding box, as we are only recomputing 
 731         ! the bounding box for the dimension that the parent split on.
 732         !
 733         ! Going to a true bounding box computation would significantly
 734         ! increase the time necessary to build the tree, and usually
 735         ! has only a very small difference.  This box is not used
 736         ! for searching but only for deciding which coordinate to split on.
 737         !
 738         do i=1,dimen
 739            recompute=.true.
 740            if (associated(parent)) then
 741               if (i .ne. parent%cut_dim) then
 742                  recompute=.false.
 743               end if
 744            endif
 745            if (recompute) then
 746               call spread_in_coordinate(tp,i,l,u,res%box(i))
 747            else
 748               res%box(i) = parent%box(i)
 749            endif
 750         end do
 751         
 752
 753         c = maxloc(res%box(1:dimen)%upper-res%box(1:dimen)%lower,1)
 754         !
 755         ! c is the identity of which coordinate has the greatest spread.
 756         !
 757         
 758         if (.false.) then
 759            ! select exact median to have fully balanced tree.
 760            m = (l+u)/2
 761            call select_on_coordinate(tp%the_data,tp%ind,c,m,l,u)
 762         else
 763            !
 764            ! select point halfway between min and max, as per A. Moore,
 765            ! who says this helps in some degenerate cases, or 
 766            ! actual arithmetic average. 
 767            !
 768            if (.true.) then
 769               ! actually compute average
 770               average = sum(tp%the_data(c,tp%ind(l:u))) / real(u-l+1,kdkind)
 771            else
 772               average = (res%box(c)%upper + res%box(c)%lower)/2.0
 773            endif
 774               
 775            res%cut_val = average
 776            m = select_on_coordinate_value(tp%the_data,tp%ind,c,average,l,u)
 777         endif
 778            
 779         ! moves indexes around
 780         res%cut_dim = c
 781         res%l = l
 782         res%u = u
 783!         res%cut_val = tp%the_data(c,tp%ind(m))
 784
 785         res%left => build_tree_for_range(tp,l,m,res)
 786         res%right => build_tree_for_range(tp,m+1,u,res)
 787
 788         if (associated(res%right) .eqv. .false.) then
 789            res%box = res%left%box
 790            res%cut_val_left = res%left%box(c)%upper
 791            res%cut_val = res%cut_val_left
 792         elseif (associated(res%left) .eqv. .false.) then
 793            res%box = res%right%box
 794            res%cut_val_right = res%right%box(c)%lower
 795            res%cut_val = res%cut_val_right
 796         else
 797            res%cut_val_right = res%right%box(c)%lower
 798            res%cut_val_left = res%left%box(c)%upper
 799            res%cut_val = (res%cut_val_left + res%cut_val_right)/2
 800
 801
 802            ! now remake the true bounding box for self.  
 803            ! Since we are taking unions (in effect) of a tree structure,
 804            ! this is much faster than doing an exhaustive
 805            ! search over all points
 806            res%box%upper = max(res%left%box%upper,res%right%box%upper)
 807            res%box%lower = min(res%left%box%lower,res%right%box%lower) 
 808         endif
 809      end if
 810    end function build_tree_for_range
 811
 812    integer function select_on_coordinate_value(v,ind,c,alpha,li,ui) &
 813     result(res)
 814      !:Purpose: Move elts of ind around between l and u, so that all points
 815      !           <= than alpha (in c cooordinate) are first, and then
 816      !           all points > alpha are second. 
 817
 818      !
 819      ! Algorithm (matt kennel). 
 820      !
 821      ! Consider the list as having three parts: on the left,
 822      ! the points known to be <= alpha.  On the right, the points
 823      ! known to be > alpha, and in the middle, the currently unknown
 824      ! points.   The algorithm is to scan the unknown points, starting
 825      ! from the left, and swapping them so that they are added to
 826      ! the left stack or the right stack, as appropriate.
 827      ! 
 828      ! The algorithm finishes when the unknown stack is empty. 
 829      !
 830      ! .. Scalar Arguments ..
 831      integer, intent (In) :: c, li, ui
 832      real(kdkind), intent(in) :: alpha
 833      ! ..
 834      real(kdkind) :: v(1:,1:)
 835      integer :: ind(1:)
 836      integer :: tmp  
 837      ! ..
 838      integer :: lb, rb
 839      !
 840      ! The points known to be <= alpha are in
 841      ! [l,lb-1]
 842      !
 843      ! The points known to be > alpha are in
 844      ! [rb+1,u].  
 845      !
 846      ! Therefore we add new points into lb or
 847      ! rb as appropriate.  When lb=rb
 848      ! we are done.  We return the location of the last point <= alpha.
 849      !
 850      ! 
 851      lb = li; rb = ui
 852
 853      do while (lb < rb)
 854         if ( v(c,ind(lb)) <= alpha ) then
 855            ! it is good where it is.
 856            lb = lb+1
 857         else
 858            ! swap it with rb.
 859            tmp = ind(lb); ind(lb) = ind(rb); ind(rb) = tmp
 860            rb = rb-1
 861         endif
 862      end do
 863      
 864      ! now lb .eq. ub 
 865      if (v(c,ind(lb)) <= alpha) then
 866         res = lb
 867      else
 868         res = lb-1
 869      endif
 870
 871      ! add a check to prevent something going wrong (Buehner)
 872      if (res < li .or. res >= ui) then
 873        !write(*,*) 'patch to handle many equal positions:',li,ui,res,v(c,ind(li:ui))
 874        res = (li + ui)/2 
 875      end if
 876      
 877    end function select_on_coordinate_value
 878
 879    subroutine select_on_coordinate(v,ind,c,k,li,ui)
 880      !:Purpose: Move elts of ind around between l and u, so that the kth
 881      !           element is >= those below, <= those above, in the coordinate c.
 882
 883      ! .. Scalar Arguments ..
 884      integer, intent (In) :: c, k, li, ui
 885      ! ..
 886      integer :: i, l, m, s, t, u
 887      ! ..
 888      real(kdkind) :: v(:,:)
 889      integer :: ind(:)
 890      ! ..
 891      l = li
 892      u = ui
 893      do while (l<u)
 894         t = ind(l)
 895         m = l
 896         do i = l + 1, u
 897            if (v(c,ind(i))<v(c,t)) then
 898               m = m + 1
 899               s = ind(m)
 900               ind(m) = ind(i)
 901               ind(i) = s
 902            end if
 903         end do
 904         s = ind(l)
 905         ind(l) = ind(m)
 906         ind(m) = s
 907         if (m<=k) l = m + 1
 908         if (m>=k) u = m - 1
 909      end do
 910    end subroutine select_on_coordinate
 911
 912   subroutine spread_in_coordinate(tp,c,l,u,interv) 
 913      !:Purpose: the spread in coordinate 'c', between l and u. 
 914      !           Return lower bound in 'smin', and upper in 'smax', 
 915
 916      ! ..
 917      ! .. Structure Arguments ..
 918      type (kdtree2), pointer :: tp
 919      type(interval), intent(out) :: interv
 920      ! ..
 921      ! .. Scalar Arguments ..
 922      integer, intent (In) :: c, l, u
 923      ! ..
 924      ! .. Local Scalars ..
 925      real(kdkind) :: last, lmax, lmin, t, smin,smax
 926      integer :: i, ulocal
 927      ! ..
 928      ! .. Local Arrays ..
 929      real(kdkind), pointer :: v(:,:)
 930      integer, pointer :: ind(:)
 931      ! ..
 932      v => tp%the_data(1:,1:)
 933      ind => tp%ind(1:)
 934      smin = v(c,ind(l))
 935      smax = smin
 936
 937      ulocal = u
 938
 939      do i = l + 2, ulocal, 2
 940         lmin = v(c,ind(i-1))
 941         lmax = v(c,ind(i))
 942         if (lmin>lmax) then
 943            t = lmin
 944            lmin = lmax
 945            lmax = t
 946         end if
 947         if (smin>lmin) smin = lmin
 948         if (smax<lmax) smax = lmax
 949      end do
 950      if (i==ulocal+1) then
 951         last = v(c,ind(ulocal))
 952         if (smin>last) smin = last
 953         if (smax<last) smax = last
 954      end if
 955
 956      interv%lower = smin
 957      interv%upper = smax
 958
 959    end subroutine spread_in_coordinate
 960
 961
 962  subroutine kdtree2_destroy(tp)
 963    !:Purpose: Deallocates all memory for the tree, except input data matrix
 964
 965    ! .. Structure Arguments ..
 966    type (kdtree2), pointer :: tp
 967    ! ..
 968    call destroy_node(tp%root)
 969
 970    deallocate (tp%ind)
 971    nullify (tp%ind)
 972
 973    if (tp%rearrange) then
 974      deallocate(tp%rearranged_data)
 975      nullify(tp%rearranged_data)
 976    endif
 977
 978    nullify(tp%the_data)
 979
 980    deallocate(tp)
 981    nullify(tp)
 982    return
 983
 984  contains
 985    recursive subroutine destroy_node(np)
 986      ! .. Structure Arguments ..
 987      type (tree_node), pointer :: np
 988      ! ..
 989      ! .. Intrinsic Functions ..
 990      intrinsic ASSOCIATED
 991      ! ..
 992      if (associated(np%left)) then
 993         call destroy_node(np%left)
 994         nullify (np%left)
 995      end if
 996      if (associated(np%right)) then
 997         call destroy_node(np%right)
 998         nullify (np%right)
 999      end if
1000      if (associated(np%box)) deallocate(np%box)
1001      deallocate(np)
1002      return
1003      
1004    end subroutine destroy_node
1005
1006  end subroutine kdtree2_destroy
1007
1008  subroutine kdtree2_n_nearest(tp,qv,nn,results)
1009    !:Purpose: Find the 'nn' vectors in the tree nearest to 'qv' in euclidean norm
1010    !           returning their indexes and distances in 'indexes' and 'distances'
1011    !           arrays already allocated passed to this subroutine.
1012    type (kdtree2), pointer      :: tp
1013    real(kdkind), target, intent (In)    :: qv(:)
1014    integer, intent (In)         :: nn
1015    type(kdtree2_result), target :: results(:)
1016    integer :: mythread
1017    integer, external :: omp_get_thread_num
1018
1019    mythread = omp_get_thread_num()
1020
1021    sr(mythread)%ballsize = huge(1.0)
1022    sr(mythread)%qv => qv
1023    sr(mythread)%nn = nn
1024    sr(mythread)%nfound = 0
1025    sr(mythread)%centeridx = -1
1026    sr(mythread)%correltime = 0
1027    sr(mythread)%overflow = .false. 
1028
1029    sr(mythread)%results => results
1030
1031    sr(mythread)%nalloc = nn   ! will be checked
1032
1033    sr(mythread)%ind => tp%ind
1034    sr(mythread)%rearrange = tp%rearrange
1035    if (tp%rearrange) then
1036       sr(mythread)%Data => tp%rearranged_data
1037    else
1038       sr(mythread)%Data => tp%the_data
1039    endif
1040    sr(mythread)%dimen = tp%dimen
1041
1042    call validate_query_storage(nn) 
1043    sr(mythread)%pq = pq_create(results)
1044
1045    call search(tp%root)
1046
1047    if (tp%sort) then
1048       call kdtree2_sort_results(nn, results)
1049    endif
1050!    deallocate(sr(mythread)%pqp)
1051    return
1052  end subroutine kdtree2_n_nearest
1053
1054  subroutine kdtree2_n_nearest_around_point(tp,idxin,correltime,nn,results)
1055    !:Purpose: Find the 'nn' vectors in the tree nearest to point 'idxin',
1056    !           with correlation window 'correltime', returing results in
1057    !           results(:), which must be pre-allocated upon entry.
1058    type (kdtree2), pointer        :: tp
1059    integer, intent (In)           :: idxin, correltime, nn
1060    type(kdtree2_result), target   :: results(:)
1061    integer :: mythread
1062    integer, external :: omp_get_thread_num
1063
1064    mythread = omp_get_thread_num()
1065
1066    allocate (sr(mythread)%qv(tp%dimen))
1067    sr(mythread)%qv = tp%the_data(:,idxin) ! copy the vector
1068    sr(mythread)%ballsize = huge(1.0)       ! the largest real(kdkind) number
1069    sr(mythread)%centeridx = idxin
1070    sr(mythread)%correltime = correltime
1071
1072    sr(mythread)%nn = nn
1073    sr(mythread)%nfound = 0
1074
1075    sr(mythread)%dimen = tp%dimen
1076    sr(mythread)%nalloc = nn
1077
1078    sr(mythread)%results => results
1079
1080    sr(mythread)%ind => tp%ind
1081    sr(mythread)%rearrange = tp%rearrange
1082
1083    if (sr(mythread)%rearrange) then
1084       sr(mythread)%Data => tp%rearranged_data
1085    else
1086       sr(mythread)%Data => tp%the_data
1087    endif
1088
1089    call validate_query_storage(nn)
1090    sr(mythread)%pq = pq_create(results)
1091
1092    call search(tp%root)
1093
1094    if (tp%sort) then
1095       call kdtree2_sort_results(nn, results)
1096    endif
1097    deallocate (sr(mythread)%qv)
1098    return
1099  end subroutine kdtree2_n_nearest_around_point
1100
1101  subroutine kdtree2_r_nearest(tp,qv,r2,nfound,nalloc,results) 
1102    !:Purpose: find the nearest neighbors to point 'idxin', within SQUARED
1103    !           Euclidean distance 'r2'.   Upon ENTRY, nalloc must be the
1104    !           size of memory allocated for results(1:nalloc).  Upon
1105    !           EXIT, nfound is the number actually found within the ball. 
1106    !
1107    !           Note that if nfound .gt. nalloc then more neighbors were found
1108    !           than there were storage to store.  The resulting list is NOT
1109    !           the smallest ball inside norm r^2 
1110    !
1111    !           Results are NOT sorted unless tree was created with sort option.
1112    type (kdtree2), pointer      :: tp
1113    real(kdkind), target, intent (In)    :: qv(:)
1114    real(kdkind), intent(in)             :: r2
1115    integer, intent(out)         :: nfound
1116    integer, intent (In)         :: nalloc
1117    type(kdtree2_result), target :: results(:)
1118    integer :: mythread
1119    integer, external :: omp_get_thread_num
1120
1121    mythread = omp_get_thread_num()
1122    !
1123    sr(mythread)%qv => qv
1124    sr(mythread)%ballsize = r2
1125    sr(mythread)%nn = 0      ! flag for fixed ball search
1126    sr(mythread)%nfound = 0
1127    sr(mythread)%centeridx = -1
1128    sr(mythread)%correltime = 0
1129
1130    sr(mythread)%results => results
1131
1132    call validate_query_storage(nalloc)
1133    sr(mythread)%nalloc = nalloc
1134    sr(mythread)%overflow = .false. 
1135    sr(mythread)%ind => tp%ind
1136    sr(mythread)%rearrange= tp%rearrange
1137
1138    if (tp%rearrange) then
1139       sr(mythread)%Data => tp%rearranged_data
1140    else
1141       sr(mythread)%Data => tp%the_data
1142    endif
1143    sr(mythread)%dimen = tp%dimen
1144
1145    !
1146    !sr(mythread)%dsl = Huge(sr(mythread)%dsl)    ! set to huge positive values
1147    !sr(mythread)%il = -1               ! set to invalid indexes
1148    !
1149
1150    call search(tp%root)
1151    nfound = sr(mythread)%nfound
1152
1153    if (sr(mythread)%overflow) then
1154       write (*,*) 'KD_TREE_TRANS: warning! return from kdtree2_r_nearest found more neighbors'
1155       write (*,*) 'KD_TREE_TRANS: than storage was provided for.  Answer is NOT smallest ball'
1156       write (*,*) 'KD_TREE_TRANS: with that number of neighbors!  I.e. it is wrong.'
1157       write (*,*) 'KD_TREE_TRANS: nfound =', nfound, ', nalloc =', nalloc
1158    endif
1159
1160    if (tp%sort .and. .not.sr(mythread)%overflow) then
1161       call kdtree2_sort_results(nfound, results)
1162    endif
1163
1164    return
1165  end subroutine kdtree2_r_nearest
1166
1167  subroutine kdtree2_r_nearest_around_point(tp,idxin,correltime,r2,&
1168   nfound,nalloc,results)
1169    !:Purpose: Like kdtree2_r_nearest, but around a point 'idxin' already existing
1170    !           in the data set. 
1171    ! 
1172    !           Results are NOT sorted unless tree was created with sort option.
1173    !
1174    type (kdtree2), pointer      :: tp
1175    integer, intent (In)         :: idxin, correltime, nalloc
1176    real(kdkind), intent(in)             :: r2
1177    integer, intent(out)         :: nfound
1178    type(kdtree2_result), target :: results(:)
1179    integer :: mythread
1180    integer, external :: omp_get_thread_num
1181    ! ..
1182    ! .. Intrinsic Functions ..
1183    intrinsic HUGE
1184    ! ..
1185
1186    mythread = omp_get_thread_num()
1187
1188    allocate (sr(mythread)%qv(tp%dimen))
1189    sr(mythread)%qv = tp%the_data(:,idxin) ! copy the vector
1190    sr(mythread)%ballsize = r2
1191    sr(mythread)%nn = 0    ! flag for fixed r search
1192    sr(mythread)%nfound = 0
1193    sr(mythread)%centeridx = idxin
1194    sr(mythread)%correltime = correltime
1195
1196    sr(mythread)%results => results
1197
1198    sr(mythread)%nalloc = nalloc
1199    sr(mythread)%overflow = .false.
1200
1201    call validate_query_storage(nalloc)
1202
1203    !    sr(mythread)%dsl = HUGE(sr(mythread)%dsl)    ! set to huge positive values
1204    !    sr(mythread)%il = -1               ! set to invalid indexes
1205
1206    sr(mythread)%ind => tp%ind
1207    sr(mythread)%rearrange = tp%rearrange
1208
1209    if (tp%rearrange) then
1210       sr(mythread)%Data => tp%rearranged_data
1211    else
1212       sr(mythread)%Data => tp%the_data
1213    endif
1214    sr(mythread)%rearrange = tp%rearrange
1215    sr(mythread)%dimen = tp%dimen
1216
1217    !
1218    !sr(mythread)%dsl = Huge(sr(mythread)%dsl)    ! set to huge positive values
1219    !sr(mythread)%il = -1               ! set to invalid indexes
1220    !
1221
1222    call search(tp%root)
1223    nfound = sr(mythread)%nfound
1224    if (tp%sort) then
1225       call kdtree2_sort_results(nfound,results)
1226    endif
1227
1228    if (sr(mythread)%overflow) then
1229       write (*,*) 'KD_TREE_TRANS: warning! return from kdtree2_r_nearest found more neighbors'
1230       write (*,*) 'KD_TREE_TRANS: than storage was provided for.  Answer is NOT smallest ball'
1231       write (*,*) 'KD_TREE_TRANS: with that number of neighbors!  I.e. it is wrong.'
1232    endif
1233
1234    deallocate (sr(mythread)%qv)
1235    return
1236  end subroutine kdtree2_r_nearest_around_point
1237
1238  function kdtree2_r_count(tp,qv,r2) result(nfound)
1239    !:Purpose: Count the number of neighbors within square distance 'r2'. 
1240    type (kdtree2), pointer   :: tp
1241    real(kdkind), target, intent (In) :: qv(:)
1242    real(kdkind), intent(in)          :: r2
1243    integer                   :: nfound
1244    integer :: mythread
1245    integer, external :: omp_get_thread_num
1246    ! ..
1247    ! .. Intrinsic Functions ..
1248    intrinsic HUGE
1249    ! ..
1250
1251    mythread = omp_get_thread_num()
1252
1253    sr(mythread)%qv => qv
1254    sr(mythread)%ballsize = r2
1255
1256    sr(mythread)%nn = 0       ! flag for fixed r search
1257    sr(mythread)%nfound = 0
1258    sr(mythread)%centeridx = -1
1259    sr(mythread)%correltime = 0
1260    
1261    nullify(sr(mythread)%results) ! for some reason, FTN 95 chokes on '=> null()'
1262
1263    sr(mythread)%nalloc = 0            ! we do not allocate any storage but that's OK
1264                             ! for counting.
1265    sr(mythread)%ind => tp%ind
1266    sr(mythread)%rearrange = tp%rearrange
1267    if (tp%rearrange) then
1268       sr(mythread)%Data => tp%rearranged_data
1269    else
1270       sr(mythread)%Data => tp%the_data
1271    endif
1272    sr(mythread)%dimen = tp%dimen
1273
1274    !
1275    !sr(mythread)%dsl = Huge(sr(mythread)%dsl)    ! set to huge positive values
1276    !sr(mythread)%il = -1               ! set to invalid indexes
1277    !
1278    sr(mythread)%overflow = .false.
1279
1280    call search(tp%root)
1281
1282    nfound = sr(mythread)%nfound
1283
1284    return
1285  end function kdtree2_r_count
1286
1287  function kdtree2_r_count_around_point(tp,idxin,correltime,r2) &
1288   result(nfound)
1289    !:Purpose: Count the number of neighbors within square distance 'r2' around
1290    !           point 'idxin' with decorrelation time 'correltime'.
1291    !
1292    type (kdtree2), pointer :: tp
1293    integer, intent (In)    :: correltime, idxin
1294    real(kdkind), intent(in)        :: r2
1295    integer                 :: nfound
1296    integer :: mythread
1297    integer, external :: omp_get_thread_num
1298    ! ..
1299    ! ..
1300    ! .. Intrinsic Functions ..
1301    intrinsic HUGE
1302    ! ..
1303
1304    mythread = omp_get_thread_num()
1305
1306    allocate (sr(mythread)%qv(tp%dimen))
1307    sr(mythread)%qv = tp%the_data(:,idxin)
1308    sr(mythread)%ballsize = r2
1309
1310    sr(mythread)%nn = 0       ! flag for fixed r search
1311    sr(mythread)%nfound = 0
1312    sr(mythread)%centeridx = idxin
1313    sr(mythread)%correltime = correltime
1314    nullify(sr(mythread)%results)
1315
1316    sr(mythread)%nalloc = 0            ! we do not allocate any storage but that's OK
1317                             ! for counting.
1318
1319    sr(mythread)%ind => tp%ind
1320    sr(mythread)%rearrange = tp%rearrange
1321
1322    if (sr(mythread)%rearrange) then
1323       sr(mythread)%Data => tp%rearranged_data
1324    else
1325       sr(mythread)%Data => tp%the_data
1326    endif
1327    sr(mythread)%dimen = tp%dimen
1328
1329    !
1330    !sr(mythread)%dsl = Huge(sr(mythread)%dsl)    ! set to huge positive values
1331    !sr(mythread)%il = -1               ! set to invalid indexes
1332    !
1333    sr(mythread)%overflow = .false.
1334
1335    call search(tp%root)
1336
1337    nfound = sr(mythread)%nfound
1338
1339    return
1340  end function kdtree2_r_count_around_point
1341
1342
1343  subroutine validate_query_storage(n)
1344    !:Purpose: make sure we have enough storage for n
1345    integer, intent(in) :: n
1346    integer :: mythread
1347    integer, external :: omp_get_thread_num
1348
1349    mythread = omp_get_thread_num()
1350
1351    if (size(sr(mythread)%results,1) .lt. n) then
1352       call utl_abort('kdtrees_mod-validate_query_storage: not enough storage for results')
1353    endif
1354
1355    return
1356  end subroutine validate_query_storage
1357
1358  function square_distance(d, iv,qv) result (res)
1359    !:Purpose: distance between iv[1:n] and qv[1:n] 
1360
1361    ! .. Function Return Value ..
1362    ! re-implemented to improve vectorization.
1363    real(kdkind) :: res
1364    ! ..
1365    ! ..
1366    ! .. Scalar Arguments ..
1367    integer :: d
1368    ! ..
1369    ! .. Array Arguments ..
1370    real(kdkind) :: iv(:),qv(:)
1371    ! ..
1372    ! ..
1373    res = sum( (iv(1:d)-qv(1:d))**2 )
1374  end function square_distance
1375  
1376  recursive subroutine search(node)
1377    !:Purpose: This is the innermost core routine of the kd-tree search.  Along
1378    !           with "process_terminal_node", it is the performance bottleneck. 
1379    !
1380    !           This version uses a logically complete secondary search of
1381    !           "box in bounds", whether the sear
1382    !
1383    type (Tree_node), pointer          :: node
1384    ! ..
1385    type(tree_node),pointer            :: ncloser, nfarther
1386    !
1387    integer                            :: cut_dim, i
1388    ! ..
1389    real(kdkind)                               :: qval, dis
1390    real(kdkind)                               :: ballsize
1391    real(kdkind), pointer           :: qv(:)
1392    type(interval), pointer :: box(:) 
1393    integer :: mythread
1394    integer, external :: omp_get_thread_num
1395
1396    mythread = omp_get_thread_num()
1397
1398    if ((associated(node%left) .and. associated(node%right)) .eqv. .false.) then
1399       ! we are on a terminal node
1400       if (sr(mythread)%nn .eq. 0) then
1401          call process_terminal_node_fixedball(node)
1402       else
1403          call process_terminal_node(node)
1404       endif
1405    else
1406       ! we are not on a terminal node
1407       qv => sr(mythread)%qv(1:)
1408       cut_dim = node%cut_dim
1409       qval = qv(cut_dim)
1410
1411       if (qval < node%cut_val) then
1412          ncloser => node%left
1413          nfarther => node%right
1414          dis = (node%cut_val_right - qval)**2
1415!          extra = node%cut_val - qval
1416       else
1417          ncloser => node%right
1418          nfarther => node%left
1419          dis = (node%cut_val_left - qval)**2
1420!          extra = qval- node%cut_val_left
1421       endif
1422
1423       if (associated(ncloser)) call search(ncloser)
1424
1425       ! we may need to search the second node. 
1426       if (associated(nfarther)) then
1427          ballsize = sr(mythread)%ballsize
1428!          dis=extra**2
1429          if (dis <= ballsize) then
1430             !
1431             ! we do this separately as going on the first cut dimen is often
1432             ! a good idea.
1433             ! note that if extra**2 < sr(mythread)%ballsize, then the next
1434             ! check will also be false. 
1435             !
1436             box => node%box(1:)
1437             do i=1,sr(mythread)%dimen
1438                if (i .ne. cut_dim) then
1439                   dis = dis + dis2_from_bnd(qv(i),box(i)%lower,box(i)%upper)
1440                   if (dis > ballsize) then
1441                      return
1442                   endif
1443                endif
1444             end do
1445             
1446             !
1447             ! if we are still here then we need to search mroe.
1448             !
1449             call search(nfarther)
1450          endif
1451       endif
1452    end if
1453  end subroutine search
1454
1455
1456  real(kdkind) function dis2_from_bnd(x,amin,amax) result (res)
1457    real(kdkind), intent(in) :: x, amin,amax
1458
1459    if (x > amax) then
1460       res = (x-amax)**2;
1461       return
1462    else
1463       if (x < amin) then
1464          res = (amin-x)**2;
1465          return
1466       else
1467          res = 0.0
1468          return
1469       endif
1470    endif
1471    return
1472  end function dis2_from_bnd
1473
1474  logical function box_in_search_range(node, sr) result(res)
1475    !:Purpose: Return the distance from 'qv' to the CLOSEST corner of node's
1476    !           bounding box for all coordinates outside the box. Coordinates 
1477    !           inside the box contribute nothing to the distance.
1478    !
1479    type (tree_node), pointer :: node
1480    type (tree_search_record), pointer :: sr(:)
1481
1482    integer :: dimen, i
1483    real(kdkind)    :: dis, ballsize
1484    real(kdkind)    :: l, u
1485    integer :: mythread
1486    integer, external :: omp_get_thread_num
1487
1488    mythread = omp_get_thread_num()
1489
1490    dimen = sr(mythread)%dimen
1491    ballsize = sr(mythread)%ballsize
1492    dis = 0.0
1493    res = .true.
1494    do i=1,dimen
1495       l = node%box(i)%lower
1496       u = node%box(i)%upper
1497       dis = dis + (dis2_from_bnd(sr(mythread)%qv(i),l,u))
1498       if (dis > ballsize) then
1499          res = .false.
1500          return
1501       endif
1502    end do
1503    res = .true.
1504    return
1505  end function box_in_search_range
1506
1507
1508  subroutine process_terminal_node(node)
1509    !:Purpose: Look for actual near neighbors in 'node', and update
1510    !           the search results on the sr(:) data structure.
1511    !
1512    type (tree_node), pointer          :: node
1513    !
1514    real(kdkind), pointer          :: qv(:)
1515    integer, pointer       :: ind(:)
1516    real(kdkind), pointer          :: data(:,:)
1517    !
1518    integer                :: dimen, i, indexofi, k, centeridx, correltime
1519    real(kdkind)                   :: ballsize, sd, newpri
1520    logical                :: rearrange
1521    type(pq), pointer      :: pqp 
1522    integer :: mythread
1523    integer, external :: omp_get_thread_num
1524
1525    mythread = omp_get_thread_num()
1526
1527    !
1528    ! copy values from sr(:) to local variables
1529    !
1530    !
1531    ! Notice, making local pointers with an EXPLICIT lower bound
1532    ! seems to generate faster code.
1533    ! why?  I don't know.
1534    qv => sr(mythread)%qv(1:) 
1535    pqp => sr(mythread)%pq
1536    dimen = sr(mythread)%dimen
1537    ballsize = sr(mythread)%ballsize 
1538    rearrange = sr(mythread)%rearrange
1539    ind => sr(mythread)%ind(1:)
1540    data => sr(mythread)%Data(1:,1:)     
1541    centeridx = sr(mythread)%centeridx
1542    correltime = sr(mythread)%correltime
1543
1544    !    doing_correl = (centeridx >= 0)  ! Do we have a decorrelation window? 
1545    !    include_point = .true.    ! by default include all points
1546    ! search through terminal bucket.
1547
1548    mainloop: do i = node%l, node%u
1549       if (rearrange) then
1550          sd = 0.0
1551          do k = 1,dimen
1552             sd = sd + (data(k,i) - qv(k))**2
1553             if (sd>ballsize) cycle mainloop
1554          end do
1555          indexofi = ind(i)  ! only read it if we have not broken out
1556       else
1557          indexofi = ind(i)
1558          sd = 0.0
1559          do k = 1,dimen
1560             sd = sd + (data(k,indexofi) - qv(k))**2
1561             if (sd>ballsize) cycle mainloop
1562          end do
1563       endif
1564
1565       if (centeridx > 0) then ! doing correlation interval?
1566          if (abs(indexofi-centeridx) < correltime) cycle mainloop
1567       endif
1568
1569
1570       ! 
1571       ! two choices for any point.  The list so far is either undersized,
1572       ! or it is not.
1573       !
1574       ! If it is undersized, then add the point and its distance
1575       ! unconditionally.  If the point added fills up the working
1576       ! list then set the sr(mythread)%ballsize, maximum distance bound (largest distance on
1577       ! list) to be that distance, instead of the initialized +infinity. 
1578       !
1579       ! If the running list is full size, then compute the
1580       ! distance but break out immediately if it is larger
1581       ! than sr(mythread)%ballsize, "best squared distance" (of the largest element),
1582       ! as it cannot be a good neighbor. 
1583       !
1584       ! Once computed, compare to best_square distance.
1585       ! if it is smaller, then delete the previous largest
1586       ! element and add the new one. 
1587
1588       if (sr(mythread)%nfound .lt. sr(mythread)%nn) then
1589          !
1590          ! add this point unconditionally to fill list.
1591          !
1592          sr(mythread)%nfound = sr(mythread)%nfound +1 
1593          newpri = pq_insert(pqp,sd,indexofi)
1594          if (sr(mythread)%nfound .eq. sr(mythread)%nn) ballsize = newpri
1595          ! we have just filled the working list.
1596          ! put the best square distance to the maximum value
1597          ! on the list, which is extractable from the PQ. 
1598
1599       else
1600          !
1601          ! now, if we get here,
1602          ! we know that the current node has a squared
1603          ! distance smaller than the largest one on the list, and
1604          ! belongs on the list. 
1605          ! Hence we replace that with the current one.
1606          !
1607          ballsize = pq_replace_max(pqp,sd,indexofi)
1608       endif
1609    end do mainloop
1610    !
1611    ! Reset sr(mythread) variables which may have changed during loop
1612    !
1613    sr(mythread)%ballsize = ballsize 
1614
1615  end subroutine process_terminal_node
1616
1617  subroutine process_terminal_node_fixedball(node)
1618    !:Purpose: Look for actual near neighbors in 'node', and update
1619    !           the search results on the sr(:) data structure, i.e.
1620    !           save all within a fixed ball.
1621    !
1622    type (tree_node), pointer          :: node
1623    !
1624    real(kdkind), pointer          :: qv(:)
1625    integer, pointer       :: ind(:)
1626    real(kdkind), pointer          :: data(:,:)
1627    !
1628    integer                :: nfound
1629    integer                :: dimen, i, indexofi, k
1630    integer                :: centeridx, correltime, nn
1631    real(kdkind)                   :: ballsize, sd
1632    logical                :: rearrange
1633    integer :: mythread
1634    integer, external :: omp_get_thread_num
1635
1636    mythread = omp_get_thread_num()
1637
1638    !
1639    ! copy values from sr(:) to local variables
1640    !
1641    qv => sr(mythread)%qv(1:)
1642    dimen = sr(mythread)%dimen
1643    ballsize = sr(mythread)%ballsize 
1644    rearrange = sr(mythread)%rearrange
1645    ind => sr(mythread)%ind(1:)
1646    data => sr(mythread)%Data(1:,1:)
1647    centeridx = sr(mythread)%centeridx
1648    correltime = sr(mythread)%correltime
1649    nn = sr(mythread)%nn ! number to search for
1650    nfound = sr(mythread)%nfound
1651
1652    ! search through terminal bucket.
1653    mainloop: do i = node%l, node%u
1654
1655       ! 
1656       ! two choices for any point.  The list so far is either undersized,
1657       ! or it is not.
1658       !
1659       ! If it is undersized, then add the point and its distance
1660       ! unconditionally.  If the point added fills up the working
1661       ! list then set the sr(mythread)%ballsize, maximum distance bound (largest distance on
1662       ! list) to be that distance, instead of the initialized +infinity. 
1663       !
1664       ! If the running list is full size, then compute the
1665       ! distance but break out immediately if it is larger
1666       ! than sr(mythread)%ballsize, "best squared distance" (of the largest element),
1667       ! as it cannot be a good neighbor. 
1668       !
1669       ! Once computed, compare to best_square distance.
1670       ! if it is smaller, then delete the previous largest
1671       ! element and add the new one. 
1672
1673       ! which index to the point do we use? 
1674
1675       if (rearrange) then
1676          sd = 0.0
1677          do k = 1,dimen
1678             sd = sd + (data(k,i) - qv(k))**2
1679             if (sd>ballsize) cycle mainloop
1680          end do
1681          indexofi = ind(i)  ! only read it if we have not broken out
1682       else
1683          indexofi = ind(i)
1684          sd = 0.0
1685          do k = 1,dimen
1686             sd = sd + (data(k,indexofi) - qv(k))**2
1687             if (sd>ballsize) cycle mainloop
1688          end do
1689       endif
1690
1691       if (centeridx > 0) then ! doing correlation interval?
1692          if (abs(indexofi-centeridx)<correltime) cycle mainloop
1693       endif
1694
1695       nfound = nfound+1
1696       if (nfound .gt. sr(mythread)%nalloc) then
1697          ! oh nuts, we have to add another one to the tree but
1698          ! there isn't enough room.
1699          sr(mythread)%overflow = .true.
1700       else
1701          sr(mythread)%results(nfound)%dis = sd
1702          sr(mythread)%results(nfound)%idx = indexofi
1703       endif
1704    end do mainloop
1705    !
1706    ! Reset sr(mythread) variables which may have changed during loop
1707    !
1708    sr(mythread)%nfound = nfound
1709  end subroutine process_terminal_node_fixedball
1710
1711  subroutine kdtree2_n_nearest_brute_force(tp,qv,nn,results) 
1712    !:Purpose: find the 'n' nearest neighbors to 'qv' by exhaustive search.
1713    !           only use this subroutine for testing, as it is SLOW!  The
1714    !           whole point of a k-d tree is to avoid doing what this subroutine
1715    !           does.
1716    type (kdtree2), pointer :: tp
1717    real(kdkind), intent (In)       :: qv(:)
1718    integer, intent (In)    :: nn
1719    type(kdtree2_result)    :: results(:) 
1720
1721    integer :: i, j, k
1722    real(kdkind), allocatable :: all_distances(:)
1723    ! ..
1724    allocate (all_distances(tp%n))
1725    do i = 1, tp%n
1726       all_distances(i) = square_distance(tp%dimen,qv,tp%the_data(:,i))
1727    end do
1728    ! now find 'n' smallest distances
1729    do i = 1, nn
1730       results(i)%dis =  huge(1.0)
1731       results(i)%idx = -1
1732    end do
1733    do i = 1, tp%n
1734       if (all_distances(i)<results(nn)%dis) then
1735          ! insert it somewhere on the list
1736          do j = 1, nn
1737             if (all_distances(i)<results(j)%dis) exit
1738          end do
1739          ! now we know 'j'
1740          do k = nn - 1, j, -1
1741             results(k+1) = results(k)
1742          end do
1743          results(j)%dis = all_distances(i)
1744          results(j)%idx = i
1745       end if
1746    end do
1747    deallocate (all_distances)
1748  end subroutine kdtree2_n_nearest_brute_force
1749  
1750
1751  subroutine kdtree2_r_nearest_brute_force(tp,qv,r2,nfound,results) 
1752    !:Purpose: find the nearest neighbors to 'qv' with distance**2 <= r2 by exhaustive search.
1753    !           only use this subroutine for testing, as it is SLOW!  The
1754    !           whole point of a k-d tree is to avoid doing what this subroutine
1755    !           does.
1756    type (kdtree2), pointer :: tp
1757    real(kdkind), intent (In)       :: qv(:)
1758    real(kdkind), intent (In)       :: r2
1759    integer, intent(out)    :: nfound
1760    type(kdtree2_result)    :: results(:) 
1761
1762    integer :: i, nalloc
1763    real(kdkind), allocatable :: all_distances(:)
1764    ! ..
1765    allocate (all_distances(tp%n))
1766    do i = 1, tp%n
1767       all_distances(i) = square_distance(tp%dimen,qv,tp%the_data(:,i))
1768    end do
1769    
1770    nfound = 0
1771    nalloc = size(results,1)
1772
1773    do i = 1, tp%n
1774       if (all_distances(i)< r2) then
1775          ! insert it somewhere on the list
1776          if (nfound .lt. nalloc) then
1777             nfound = nfound+1
1778             results(nfound)%dis = all_distances(i)
1779             results(nfound)%idx = i
1780          endif
1781       end if
1782    enddo
1783    deallocate (all_distances)
1784
1785    call kdtree2_sort_results(nfound,results)
1786
1787
1788  end subroutine kdtree2_r_nearest_brute_force
1789
1790  subroutine kdtree2_sort_results(nfound,results)
1791    !:Purpose: Use after search to sort results(1:nfound) in order of increasing 
1792    !           distance.
1793    integer, intent(in)          :: nfound
1794    type(kdtree2_result), target :: results(:) 
1795    !
1796    !
1797
1798    !THIS IS BUGGY WITH INTEL FORTRAN
1799    !    If (nfound .Gt. 1) Call heapsort(results(1:nfound)%dis,results(1:nfound)%ind,nfound)
1800    !
1801    if (nfound .gt. 1) call heapsort_struct(results,nfound)
1802
1803    return
1804  end subroutine kdtree2_sort_results
1805
1806  subroutine heapsort(a,ind,n)
1807    !:Purpose: Sort a(1:n) in ascending order, permuting ind(1:n) similarly.
1808    ! 
1809    !           If ind(k) = k upon input, then it will give a sort index upon output.
1810    !
1811    integer,intent(in)          :: n
1812    real(kdkind), intent(inout)         :: a(:) 
1813    integer, intent(inout)      :: ind(:)
1814
1815    !
1816    !
1817    real(kdkind)        :: value   ! temporary for a value from a()
1818    integer     :: ivalue  ! temporary for a value from ind()
1819
1820    integer     :: i,j
1821    integer     :: ileft,iright
1822
1823    ileft=n/2+1
1824    iright=n
1825
1826    !    do i=1,n
1827    !       ind(i)=i
1828    ! Generate initial idum array
1829    !    end do
1830
1831    if(n.eq.1) return                  
1832
1833    do 
1834       if(ileft > 1)then
1835          ileft=ileft-1
1836          value=a(ileft); ivalue=ind(ileft)
1837       else
1838          value=a(iright); ivalue=ind(iright)
1839          a(iright)=a(1); ind(iright)=ind(1)
1840          iright=iright-1
1841          if (iright == 1) then
1842             a(1)=value;ind(1)=ivalue
1843             return
1844          endif
1845       endif
1846       i=ileft
1847       j=2*ileft
1848       do while (j <= iright) 
1849          if(j < iright) then
1850             if(a(j) < a(j+1)) j=j+1
1851          endif
1852          if(value < a(j)) then
1853             a(i)=a(j); ind(i)=ind(j)
1854             i=j
1855             j=j+j
1856          else
1857             j=iright+1
1858          endif
1859       end do
1860       a(i)=value; ind(i)=ivalue
1861    end do
1862  end subroutine heapsort
1863
1864  subroutine heapsort_struct(a,n)
1865    !:Purpose: Sort a(1:n) in ascending order
1866    ! 
1867    integer,intent(in)                 :: n
1868    type(kdtree2_result),intent(inout) :: a(:)
1869
1870    !
1871    !
1872    type(kdtree2_result) :: value ! temporary value
1873
1874    integer     :: i,j
1875    integer     :: ileft,iright
1876
1877    ileft=n/2+1
1878    iright=n
1879
1880    !    do i=1,n
1881    !       ind(i)=i
1882    ! Generate initial idum array
1883    !    end do
1884
1885    if(n.eq.1) return                  
1886
1887    do 
1888       if(ileft > 1)then
1889          ileft=ileft-1
1890          value=a(ileft)
1891       else
1892          value=a(iright)
1893          a(iright)=a(1)
1894          iright=iright-1
1895          if (iright == 1) then
1896             a(1) = value
1897             return
1898          endif
1899       endif
1900       i=ileft
1901       j=2*ileft
1902       do while (j <= iright) 
1903          if(j < iright) then
1904             if(a(j)%dis < a(j+1)%dis) j=j+1
1905          endif
1906          if(value%dis < a(j)%dis) then
1907             a(i)=a(j); 
1908             i=j
1909             j=j+j
1910          else
1911             j=iright+1
1912          endif
1913       end do
1914       a(i)=value
1915    end do
1916  end subroutine heapsort_struct
1917
1918  !--------------------------------------------------------------------------
1919  ! kdtree2_3dPosition
1920  !--------------------------------------------------------------------------
1921  function kdtree2_3dPosition(lon_rad, lat_rad) result(positionArray)
1922    !
1923    !:Purpose: Calculate the 3 dimensional coordinates of a point
1924    !          on the sphere of Earth radius given
1925    !          the longitude-latitude position on the surface of the sphere
1926    !          in radian.
1927    !
1928    implicit none
1929
1930    ! arguments
1931    real(kdkind) :: positionArray(3)  ! returned values of function
1932    real(8), intent(in) :: lon_rad, lat_rad
1933    
1934    positionArray(1) = ec_ra * sin(lon_rad) * cos(lat_rad)
1935    positionArray(2) = ec_ra * cos(lon_rad) * cos(lat_rad)
1936    positionArray(3) = ec_ra * sin(lat_rad)
1937
1938  end function kdtree2_3dPosition
1939
1940end module kdTree2_mod